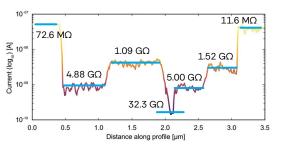
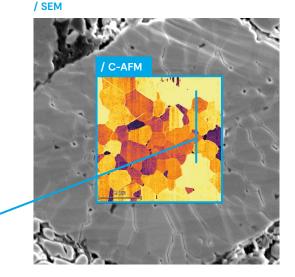


Battery research: Cathode Tape Inspection using AFM-in-SEM LiteScope™

- · Site-specific local resistivity of individual particles
- In-situ performance and degradation of battery components
- No air exposure of sensitive surfaces
- Complementary to SEM analytical capabilities (FIB, EDX, etc.)


Measurement modes: C-AFM, AFM, SEM, EDX



IntraParticle connectivity

SEM imaging identifies the specific particle, C-AFM provides a complex conductivity distribution inside the secondary particle.

Analysis of cathodes composed of multiple active materials

/ SEM + EDX (Mn)

Material composition by EDX mapping identifies the type of grains (NCA and NMC).

Electrical properties characterization by C-AFM revealed a 3 OOM conductivity decrease in NMC grain, indicating that the grain was delaminated and its connections significantly weakened.

Current collecto

NCA l_{avg} = 3.07 nA

/ SEM + C-AFM

NMC I_{avg} = 0.05 nA

Cathode degradation: Impact of cycling on cathode active material

AFM-in-SEM conductive analyses of pristine and 200-cycled cathode tape unravel local resistance changes.

Low, homogeneous conductivity

Loading shuttle

High, localized conductivity on the edges of the grains

AFM LiteScope with Sample Transfer Module

- Transfers the samples safely with no air exposure
- Compatible with leading SEM Inert atmosphere sample transfer systems and custom load-lock solutions

Thermo Fisher

Quorum

AFM-in-SEM solution

Scanner with guiding rails

10^{-7.3}A 10^{8.0} 10^{-8.5} 10^{-9.0} 10^{-9.5} 10^{-10.0} 10^{-10.5} 10^{-11.0} 10^{-12.0}

10^{7.3}A

10^{-8.0}

10^{-8.5} 10^{-9.0}

10^{-9.5}

10^{-10.0}

10^{-10.5}

10^{-11.0}

10^{-12.0}