NenoVision

Next level of imaging

LiteScope AFM-in-SEM

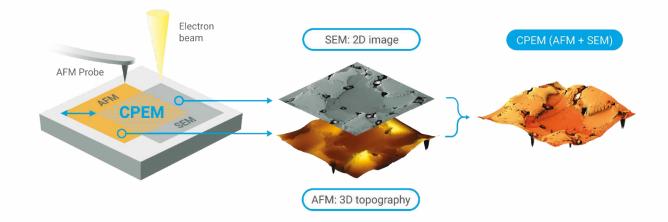
Measurement modes

- Correlative multimodal sample analysis
- In-situ sample characterization
- Precise location of the region of interest

LiteScope is a cutting-edge plug and play solution that enables in-situ AFM-in-SEM measurement and offers a wide range of possible application techniques.

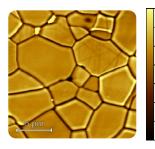
The compact design and a state-of-the-art digital signal processing unit enable to analysis a broad range of **mechanical**, **electrical and magnetic properties of a sample**.

Available measurement modes

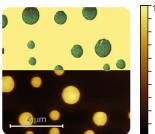

- Correlative: CPEM+
- Mechanical: AFM Topography, Energy
 Dissipation, Phase Imaging, Nanoindentation
- Electrical: C-AFM, KPFM, EFM, STM
- Magnetic: MFM
- Electro-mechanical: PFM
- Spectroscopy modes: F-z curves, I-V curves

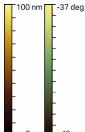
CORRELATIVE MODES

Correlative Probe and Electron Microscopy (CPEM)


The state-of-the-art technology CPEM enables simultaneous detection and acquisition of AFM and SEM signals at the same time and in the same place. The obtained data can be directly

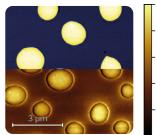
correlated and result into 3D image that extends the SEM images with the AFM measurement techniques. The unique scanning system enables very accurate **multi-modal image correlation**.

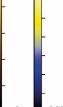

NenoVision


MECHANICAL MODES

Atomic Force Microscopy (AFM)

AFM allows **high-resolution topography** measurements of a wide range of samples. Different types of self-sensing probes can be used. Measurements can be made in contact or tapping mode.



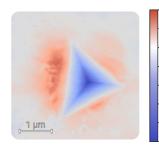


170 nm

Phase Imaging

Phase imaging is a technique used to map variations in surface properties such as **elasticity**, **adhesion**, **and friction**. It works as one-pass a technique which detects the phase between the probe driving signal and probe oscillation signal while maintaining the constant amplitude of the oscillations.

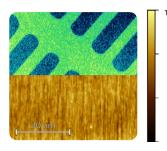
100 nm


0

25 nm

-0.32 V

Energy Dissipation


Energy dissipation provides imaging of the **local elastic properties** of the material. This method measures the energy dissipated by the tip–sample interaction in tapping mode during the scanning.

Nanoindentation

A widely used method for **quantitative material hardness characterization**. LiteScope's dedicated nanoindentation module from Alemnis enables local hardness and elasticity measurement with supreme control over experiment conditions inside SEM.

ELECTRO-MECHANICAL MODES

15 nm 0.8 deg

Piezoresponse Force Microscopy (PFM)

PFM allows imaging of **piezoelectric material domains**. This method measures the mechanical response of the material to the applied alternating voltage together with topography.

0.2

10 nA

ELECTRICICAL MODES

Conductive AFM (C-AFM)

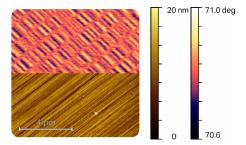
Conductive AFM provides a high-resolution **local conductivity map** of the sample. A bias voltage is applied between the tip, and the sample and the tip-sample current flow is measured during contact AFM topography measurement.

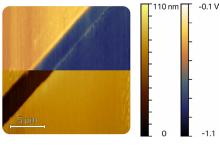
Kelvin Probe Force Microscopy (KPFM)

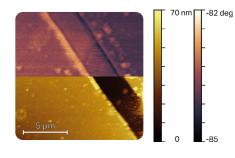
KPFM is a two-pass technique, estimating the **local distribution of surface potentials**. In the first-pass the topography is measured, while in the second-pass the electrical interaction between the tip and the sample charcterize local surface potential.

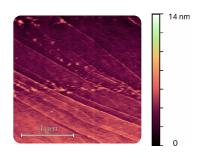
Electrostatic Force Microscopy (EFM)

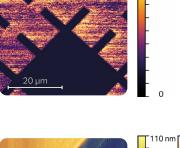
EFM maps **electrical properties of a sample** surface by detecting the electrostatic force between the surface and a biased AFM tip which provides useful, qualitative information on electric field gradients of a sample surface.

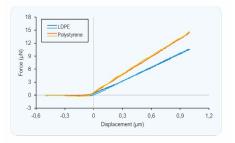

Scanning Tunneling Microscopy (STM)

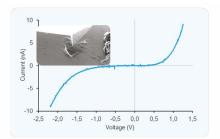

STM allows researchers to map the **conductivity of a sample's surface atom by atom** with an ultra-high resolution providing a threedimensional profile of a surface. It enables researchers to examine many characteristics, including roughness and surface defects.


MAGNETIC MODES


Magnetic Force Microscopy (MFM)


MFM enables **high-resolution imaging of the magnetic properties** of different materials. Using a probe with a magnetic coating on the tip side of the cantilever, the AFM system can qualitatively measure the magnetic field gradients above the sample surface.





SPECTROSCOPY MODES

F-z curves

F-z spectroscopy is a valuable tool for precise local sample characterization. Spectroscopy is used for many purposes such as sample **stiffness analysis**, detailed **surface-tip force progress** or **local elasticity/plasticity determination**.

I-V curves

I-V curves give detailed information about the **electrical properties** of the sample. The AFM-in-SEM configuration provides precise tip navigation and other possibilities for experiment design.

Available probes

- Akiyama sensor: AFM Topography, Energy Dissipation
- PRS/A: AFM Topography, Phase Imaging, F-z curves
- NenoProbe Electric: AFM Topography, Phase Imaging, C-AFM, KPFM, EFM, PFM, I-V curves
- NenoProbe Magnetic: AFM Topography, MFM
- Berkovich tip: Nanoindentation

Optimized measurement workflow

LiteScope assures complete control of your in-situ measurements via the online-based NenoView software. It offers a wide range of features that assure time-efficient and easy work with the AFM-in-SEM:

- intuitive **UI adaptable** to customer's needs
- Al-driven topographic correction
- Method-based automated probe tuning
- Single-click operations eliminating repetitive tasks
- Schematics of device configuration
- control via inbuilt scripting features

Need something else?

Discuss custom solutions at application@nenovision.com

Contact us! info@nenovision.com

www.nenovision.comNenoVision